DM2282

Stepper Motor Driver

C F

1. Features:

- Anti-Resonance provides optimal torque and nulls mid-range instability
- Operating voltage: 150 230 VAC or 212 325 VDC
- Motor auto-identification and parameter auto-configuration technology, offers optimal responses with different motors
- Multi-Stepping allows a low resolution step input to produce a higher microstep output, thus offers smoother motor movement
- Soft-start with no "jump" when powered on
- Output current programmable, from 0.5A to 8.2A. It can also be set via DIP switches.
- Pulse input frequency up to 200 kHz
- TTL compatible and optically isolated input
- Automatic idle-current reduction (Reduction rate can be software configured)
- Suitable for 2-phase and 4-phase motors
- Support PUL/DIR and CW/CCW modes
- Over-voltage, under-voltage, over-current, phase-error protections

2. Description:

The DM2282 is a high voltage, fully digital stepper drive developed with advanced DSP control algorithm based on the latest motion control technology. It has achieved a unique level of system smoothness, providing optimal torque and nulls mid-range instability. Its motor auto-identification and parameter auto-configuration feature offers quick setup to optimal modes with different motors. Compared with traditional analog drives, DM2282 can drive a stepper motor at much lower noise, lower heating, and smoother movement. Its unique features make DM2282 an ideal choice for high requirement applications.

3. Applications:

Suitable for a wide range of stepper motors, from NEMA size 34 to 51. It can be used in various applications such as laser cutters, laser markers, high precision X-Y tables, labeling machines, CNC router, etc. Its unique features make the DM2282 an ideal choice for applications that require both low-speed smoothness and high speed performances

4. Electrical Specification:

Parameters	Min.	Тур.	Max.	Unit
Output current	0,5	-	8.2	A
Supply Voltage	80 (115)	230 (325)	253 (325)	VAC (VDC)
Logical Signal Current	7	10	16	mA
Pulse input frequency	0	-	200	kHz
Minimal pulse width	2.5			μs
Minimal direction setup	5.0			μs
Isolation Resistance	500			MΩ

5. Further Specifications:

Parameters	Min.	Тур.	Max.
Microsteps / 1.8°	200	the star	25600
Puls / Direction (PUL / DIR)		Х	
Double pulse (CW / CCW)		Х	
NEMA Sizes	23		34
Motor Type Mecheltron	57BYGH-XXX		86BYGH-XXX
Weight	1.58 kg		

Stepper Motor Driver

DM2282

6. Environment:

Cooling	Natural or forces cooling		
	Environment	Avoid dust, oil, fog and corrosive gases	
Operating Environment	Ambient Temperature	0 °C - 40 °C	
Operating Environment	Humidity	40 % RH bis 90 % RH	
	Operating Temperature	max. 90 ℃	
Storage Temperature	-20 °C to 65 °C		

7. DIP Switch Settings:

Dynamic Current Configuration				
Peak Current	RMS Current	SW 1	SW 2	SW 3
(Default)		Off	Off	Off
2,20 A	1,60 A	On	Off	Off
3,20 A	2,30 A	Off	On	Off
4,50 A	3,20 A	On	On	Off
5,20 A	3,70 A	Off	Off	On
6,20 A	4,40 A	On	Off	On
7,30 A	5,20 A	Off	On	On
8,20 A	5,90 A	On	On	On

SW4 is used to set the percentage of the motor idle current. In the OFF position, this means that the stall current is set to 50% of the selected output current. In the ON position, this means that the stall current is set equal to the selected dynamic current. The current is automatically reduced to 50% of the selected dynamic current 0.4 seconds after the last pulse.

Micro-Step-Resolution Configuration					
Micro Steps	Steps/rev. (1,8°)	SW 5	SW 6	SW 7	SW 8
De	fault	On	On	On	On
1/2	400	Off	On	On	On
1/4	800	On	Off	On	On
1/8	1600	Off	Off	On	On
1/16	3200	On	On	Off	On
1/32	6400	Off	On	Off	On
1/64	12800	On	Off	Off	On
1/128	25600	Off	Off	Off	On
1/5	1000	On	On	On	Off
1/10	2000	Off	On	On	Off
1/20	4000	On	Off	On	Off
1/25	5000	Off	Off	On	Off
1/40	8000	On	On	Off	Off
1/50	10000	Off	On	Off	Off
1/100	20000	On	Off	Off	Off
1/125	25000	Off	Off	Off	Off

8.Pin Assignment:

Pin	1/0	Details			
Power and M	Power and Motor Terminal Block				
PE	-	Connect for Protective Earth (Generally green-yellow wire)			
Ν		Power supply inputs. If AC input, recommend use isolation transformers with theoretical output voltage			
L	_	of 150 ~ 230 V AC			
A +	0	Motor Phase A +			
A -	0	Motor Phase A -			
B +	0	Motor Phase B +			
В-	0	Motor Phase B -			

DM2282

Stepper Motor Driver

Signal Term	Signal Terminal Connector				
FLT-	0	Fault Signal: OC output signal, active when one of the following protection is activated: over-voltage, over current, low voltage, phase error and over-temperature. This port can sink or source 20mA current at 24V. In default, the			
FLT+	0	resistance between FAULT+ and FAULT- is high impedance in normal operation and become low when DM2282 goes into error.			
ENA-	Т	Enable signal: This signal is used for enabling/disabling the drive. In default, high level (NPN control signal) for enabling the driver and low level for disabling the driver. Usually left UNCONNECTED (ENABLED). Please note			
ENA+	I	that PNP and Differential control signals are on the contrary, namely Low level for enabling. The active level of ENA signal is software configurable.			
DIR-	I	Direction signal: In single pulse mode, this signal has low/high voltage levels that represent two directions of rotation of the motor. In double pulse mode (configurable via software), this signal is a counter-clock pulse (CCW) that is			
DIR+	Ι	active at both high and low levels. For reliable movement behaviour, the DIR signal should be at least 5µs and the PUL signal. 4-5V for DIR-HIGH, 0-0.5V for DIR-LOW.			
PUL-	I	Pulse signal: In single pulse mode (pulse/direction), this input represents a pulse signal, with each rising or falling edge being active (configurable via software). In double pulse mode (configurable via software), this input			
PUL+	Т	represents a clockwise pulse (CW), which is active at both high and low levels. 4-5V for PUL-HIGH, 0-0.5V for PUL- LOW. For a reliable response, the pulse width should be longer than 2.5µs.			

9. Protection Indication:

Prio.	Number Flashing	Sequence of the red LED	Description	
1.	1	л	Overcurrent protection activated when the peak current exceeds the limit.	
2.	2		Overvoltage protection activated when the operating voltage is higher than 60 V DC	
3.	3		Reserved	

10. Mechanical Data:

11. Wiring:

A complete system consists of stepper motor, stepper motor driver, power supply and controller (pulse generator). A typical connection diagram is shown in the left figure.